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Recent Developments in Vorton Theory 
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This article provides a concise overview of recent theoretical results concerning 
the theory of vortons, which are defined to be (centrifugally supported) equilibrium 
configurations of (current-carrying) cosmic string loops. Following a presentation 
of the results of work on the dynamical evolution of small circular string loops, 
whose minimum energy states are the simplest examples of vortons, recent order- 
of-magnitude estimates of the cosmological density of vortons produced in various 
kinds of theoretical scenarios are briefly summarized. 

1. I N T R O D U C T I O N  

It is rather generally accepted (Shellard and Vilenkin, 1994) that among 
the conceivable varieties of  topological defects of the vacuum that might 
have been generated in early phase transitions, the vortex- type defects describ- 
able on a macroscopic scale as cosmic  s tr ings are the kind that is most likely 
to actually occur- -a t  least in the postinflationary epoch--because  the other 
main categories, namely monopoles and walls, would produce a catastrophic 
cosmological mass excess. Even a single wall stretching across a Hubble 
radius would by itself be too much, while in the case of  monopoles it is their 
collective density that would be too high unless the relevant phase transition 
occurred at an energy far below that of the GUT level, a possibility that is 
commonly neglected on the grounds that no monopole formation occurs in 
the usual models for the transitions in the relevant range, of  which the most 
important is that of electroweak symmetry breaking. 

The case of  cosmic strings is different. One reason is that (although 
they are not produced in the standard electroweak model) strings are actually 
produced at the electroweak level in many of the commonly considered (e.g., 
supersymmetric) alternative models. A more commonly quoted reason why 
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the case of strings should be different, even if they were formed at the GUT 
level, is that--while it may have an important effect in the short run as a 
seed for galaxy formation--such a string cannot be cosmologically dangerous 
just by itself, while a distribution of cosmic strings is also cosmologically 
harmless because (unlike "local" as opposed to "global" monopoles) they 
will ultimately radiate away their energy and progressively disappear. How- 
ever, while this latter consideration is indeed valid in the case of ordinary 
Goto-Nambu-type strings, it was pointed out by Davis and Shellard (1988, 
1989) that it need not apply to "superconducting" current-carrying strings of 
the kind originally introduced by Witten (1985). This is because the occur- 
rence of stable currents allows loops of string to be stabilized in states known 
as "vortons," so that they cease to radiate. 

The way this happens is that the current, whether timelike or spacelike, 
breaks the Lorentz invariance along the string worldsheet (Carter, 1989a, b, 
1995a; Peter, 1992a, b), thereby leading to the possibility of rotation, with 
velocity v say. The centrifugal effect of this rotation may then compensate 
the string tension T in such a way as to produce an equilibrium configuration, 
i.e., what is known as a vor ton ,  in which 

T = v 2 U  (1) 

where U is the energy per unit length in the corotating rest frame (Carter, 
1990, 1995a). This condition is interpretable as meaning that the circulation 
velocity v is the same as the velocity (Carter, 1989a, b) of extrinsic (transverse) 
"wiggle"-type perturbation--so that relatively backward-moving "wiggles" 
will be effectively static deformations. Such a vorton state will be stable, at 
least classically, if it minimizes the energy for given values of the pair of 
conserved quantities characterizing the current in the loop, namely the phase 
winding number N, say, and the corresponding particle number Z, say, 
whose product 

J = N Z  (2) 

is interpretable in the case of a circular loop as the magnitude of its angular 
momentum. If the current is electromagnetically coupled with charge coupling 
constant e, then the latter will determine a corresponding vorton charge Q 
= Z e .  

Whereas the collective energy density of a distribution of nonconducting 
cosmic strings will decay in a similar manner to that of a radiation gas, in 
contrast, for a distribution of relic vortons, the energy density will scale like 
that of ordinary matter. Thus, depending on when and how efficiently they 
were formed, and on how stable they are in the long run, such a distribution 
of vortons might eventually come to dominate the density of the universe. 
It has been rigorously established (Carter, 1993; Martin, 1994, 1995) that 
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circular vorton configurations of this kind will commonly (though not always) 
be stable in the dynamic sense at the classical level, but very little is known 
so far about noncircular configurations or about the question of stability 
against quantum tunneling effects, one of the difficulties being that the latter 
is likely to be sensitively model dependent. 

2. DYNAMICS OF CIRCULAR STRING LOOPS 

Using the kind of string model (Carter and Peter, 1995) that is appropriate 
for describing the effect of a Witten-type current, Larsen and Axenides (1997) 
have recently carried out an analytic treatment of the special case of a free 
circular string loop for which the angular momentum J vanishes, so that there 
is no centrifugal effect to prevent the ultimate collapse of the loop. Extending 
this to the case for which a centrifugal is present barrier, we have undertaken 
a systematic analysis (Carter et al., 1997) of the dynamics of a free circular 
string loop carrying a Witten-type current in the generic case for which both 
N and Z have nonzero values. These values will be given in terms of a pair 
of Bernoulli-type constants of integration, B and C say, by 

N -  z = c , / E  (3) 
2 w ~ o  ' 

where w, o is a constant of the order of unity that depends on the particular 
form of the string model. The kind of string model needed for representing 
the macroscopic effect of a Witten-type "superconducting" vacuum vortex 
is specified (Carter and Peter, 1995) by a Lagrangian function .~ depending 
on a single scalar variable w that is proportional to the squared magnitude 
of the scalar phase variable (whose loop integral specifies the winding number 
N) with Ko as the proportionality constant. An important role in the analysis 
is played by the derived function ~s that is obtainable from the Lagrangian 
using the formula 

= - 2 ~wwJ (4) 

and that is adjusted (by the convention used to fix the normalization of K0) 
so that ~ tends to unity in the null current limit, i.e., as w tends to zero. 

The solutions fall generically into two distinct classes, namely those for 
which B 2 > C 2, in which the string current remains always spacelike, i.e., 
w > 0, and those for which B 2 < C 2, in which the current remains always 
timelike, i.e., w < 0. Intermediate between these classes is the special "chirar' 
limit case characterized by B 2 = C 2, in which the current remains always 
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null, i.e., w = 0. A key intermediate step in the analysis is the establishment 
of a relation of the form 

e2 B 2 - C27K2 
- ( 5 )  

w 

which determines the loop circumference e = 2wr as a function of w and 
thus implicitly determines the state variable w as a function of e, except in 
the special "chiral" limit case B 2 = C z, for which w = 0, so that the right- 
hand side is indeterminate. The outcome of the analysis (Carter e t  al . ,  1997) 
is that the string radius r is governed by an equation of the form 

M2i.2 = M 2 _ y 2  (6) 

(using a dot for time differentiation) in which M is the constant mass energy 
of the loop and Y is an effective potential that is determined as a function 
of the loop circumference in the form 

C2~ 
Y - ~ e  (7) 

e 

where the coefficients ~ and ~ have constant values (the former being just 
unity) in the "chiral" case, while in general they will be determined as (rather 
slowly varying) functions of e by the relation (5). It is to be observed that 
there is an asymptotic confining potential contribution that rises linearly with 
the radius, and that (unlike the familiar Kepplerian particle problem, for 
which the centrifugal barrier goes as the inverse square of the radius) in the 
present case the effective centrifugal barrier goes just as the inverse first 
power of the radius. 

It is evident in the "chiral" case, and can be verified in general, that the 
effective potential given by (7) will have a gradient given by 

dY ~2 
- ~ ( 8 )  

de ~ e  2 

which vanishes at the minimum of  Y where 

B2 (*~ -'t- ~ )  = C2~2,~ (9) 

It can be seen from (6) that the value of Y at this minimum will also be the 
minimum admissible value of the mass parameter for the given values of B 
and C, and that when M has this minimum value the loop will be in a state 
of equilibrium with radius given by the solution of (9), which can be shown 
to be equivalent to the vorton equilibrium condition (1) that was quoted at 
the outset. 
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Whether such a vorton equilibrium state is actually attainable depends 
on whether the minimality condition (9) actually has a solution in the admissi- 
ble range of string states. The explicit form of the relevant string model 
(Carter and Peter, 1995), is given by 

= - - m  2 - -  m~ In , f ~  (10) 

with 

w 
~f = I + ~ (II) 

m; 

where m and m, are constants. The first one, m, is the relevant Kibble mass, 
as characterized by the condition that m 2 should be the common limit of  the 
tension T and the energy density U in the zero-current limit. The other one, 
m,, is the mass scale associated with the carder field responsible for the 
Witten current. The validity of this model is limited to the range 

e -'"-/m" < ~s < 2 (12) 

the lower bound being where the tension T tends to zero in the timelike 
current regime, while the upper bound is the saturation limit in the timelike 
current regime. It can be seen that the loop will oscillate periodically without 
approaching either of these "dangerous" limits provided the ratio B/C is not 
too far from unity (i.e., from the "chiral" value). 

3. OR DER-OF-MAGNITUDE ESTIMATES 

Whether or not it is exactly circular (as assumed in the analytic treatment 
that has just been described), the numerical value of the total mass M of a 
vorton state characterized by the quantum numbers N and Z will be given 
(Carter, 1990, 1991) in rough order of magnitude by a formula of the form 

M ~ INZII/2m (13) 

where m is the relevant Kibble mass, which will normally be given approxi- 
mately by the mass of  the Higgs field responsible for the relevant vacuum 
symmetry breaking. 

In the earliest crude quantitative estimates (Davis and Shellard, 1988, 
1989; Carter, 1991) of the likely properties of a cosmological vorton distribu- 
tion produced in this way, it was assumed not only that the current was 
stable against leakage by tunneling, but also that the Witten mass scale m, 
characterizing the relevant carrier field was of the same order of magnitude 
as the Kibble mass scale m characterizing the string itself. The most significant 
development in the more detailed investigations carried out more recently 
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(Carter, 1995b, Brandenberger et al., 1996) is the extension to cases in which 
m, is considerably smaller than m. A rather extreme example that immediately 
comes to mind is that for which m is postulated to be at the GUT level, while 
m, is at the electroweak level, in which case it is found that the resulting 
vorton density will be far too low to be cosmologically significant. 

The simplest scenarios are those for which (unlike the example just 
quoted) the relation 

~ ,  ~> m (14) 

is satisfied in dimensionless Planck units as a rough order-of-magnitude 
inequality. In this case the current condensation would have occurred during 
the regime in which [as pointed out by Kibble (1976, 1980) in the early years 
of cosmic string theory] the dynamics was dominated by friction damping. 
Under these circumstance it is estimated (Carter, 1995b; Brandenberger et  
al., 1996) that the typical value of the quantum numbers of vortons in the 
resulting population will be given very roughly by 

N ~- Z ~ ml/2m~ 3/4 (15) 

which by (13) implies a typical vorton mass given by 

(m___m__13'2 
M ~ \ , f -~ . /  (16) 

which, in view of (14), will never exceed the Planck mass. When the cosmo- 
logical temperature has fallen to a value 19, say, the estimated number density 
n of the vortons is given as a constant fraction of the corresponding number 
density ~193 of blackbody photons by the rough order-of-magnitude formula 

- -  ~ m l  ( 1 7 )  
193 

It follows in this case that, in order to avoid producing a cosmological mass 
excess, the value of m. in this formula should not exceed a limit that works 
out to be of the order of l0 -9, and the limit is even smaller, around 10 -11, 
when the two scales m. and m are comparable. 

Limits in roughly the same range, round about 10 -t~ (about midway 
between the GUT value 10 .3 and the electroweak value 10 -16) are also 
obtained (Brandenberger et  al., 1996) for m. in scenarios for which, instead 
of (14), 

< <  m (18) 

but in this case the analysis is more complicated and also more uncertain, 
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since the result is sensitive to the value of  an efficiency factor e that is expected 
to be of  order unity, but whose exact evaluation will require numerical work 
that will have to be much more advanced than has been possible so far. In 
terms of  this quantity the relevant analogue of  (17) is expressible as 

0__ 5 ~_ (,f-m-[,)<3 +~v(3-~> (19) 

which means that the vorton number density n will typically be very much 
lower than in the preceding case, but this is compensated, as far as their 
contribution to the mass density of  the universe is concerned, by the fact 
that the typical vorton mass M will be much higher: the relevant analogue 
of  (16) is 

m 2 
M ~- - -  (20) 

??/, 

which, in view of  (18), will always exceed the Planck mass. 
Even if they contribute only a negligibly small fraction of  the density 

of  the universe, the vortons may nevertheless give rise to astrophysically 
interesting effects: in particular, it has recently been suggested by Bonazzola  
and Peter (1997) that they might account for otherwise inexplicable cosmic 
ray events. 
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